PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE
نویسندگان
چکیده مقاله:
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. We define the primary spectrum of $M$, denoted by $mathcal{PS}(M)$, to be the set of all primary submodules $Q$ of $M$ such that $(operatorname{rad}Q:M)=sqrt{(Q:M)}$. In this paper, we topologize $mathcal{PS}(M)$ with a topology having the Zariski topology on the prime spectrum $operatorname{Spec}(M)$ as a subspace topology. We investigate compactness and irreducibility of this topological space and provide some conditions under which $mathcal{PS}(M)$ is a spectral space.
منابع مشابه
ON THE MAXIMAL SPECTRUM OF A MODULE
Let $R$ be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over $R$, called $mbox{Max}$-injective and $mbox{Max}$-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of $X$-injective and strongly top modules to these classes of modules and obtain some related results.
متن کاملThe Graded Classical Prime Spectrum with the Zariski Topology as a Notherian Topological Space
Let G be a group with identity e. Let R be a G-graded commutative ring and let M be a graded R-module. The graded classical prime spectrum Cl.Specg(M) is defined to be the set of all graded classical prime submodule of M. The Zariski topology on Cl.Specg(M); denoted by ϱg. In this paper we establish necessary and sufficient conditions for Cl.Specg(M) with the Zariski topology to be a Noetherian...
متن کاملOn two problems concerning the Zariski topology of modules
Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...
متن کاملThe Basic Zariski Topology
We present the Zariski spectrum as an inductively generated basic topology à la Martin-Löf and Sambin. Since we can thus get by without considering powers and radicals, this simplifies the presentation as a formal topology initiated by Sigstam. Our treatment includes closed and open subspaces: that is, quotients and localisations. All the effective objects under consideration are introduced by ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 53- 68
تاریخ انتشار 2020-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023